Oscillatory Properties of Solutions of Even-Order Differential Equations
نویسندگان
چکیده
منابع مشابه
Nonrectifiable Oscillatory Solutions of Second Order Linear Differential Equations
The second order linear differential equation (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.
متن کاملEven-order half-linear advanced differential equations: improved criteria in oscillatory and asymptotic properties
We establish some new criteria for oscillation and asymptotic behavior of solutions of evenorder half-linear advanced differential equations. We study the case of canonical and the case of noncanonical equations subject to various conditions. © 2015 Elsevier Inc. All rights reserved.
متن کاملLimit Properties of Solutions of Singular Second-Order Differential Equations
We discuss the properties of the differential equation u′′ t a/t u′ t f t, u t , u′ t , a.e. on 0, T , where a ∈ R\{0}, and f satisfies the Lp-Carathéodory conditions on 0, T × R2 for some p > 1. A full description of the asymptotic behavior for t → 0 of functions u satisfying the equation a.e. on 0, T is given. We also describe the structure of boundary conditions which are necessary and suffi...
متن کاملOscillatory Solutions for Certain Delay-differential Equations
The existence of oscillatory solutions for a certain class of scalar first order delay-differential equations is proved. An application to a delay logistic equation arising in certain models for population variation of a single specie in a constant environment with limited resources for growth is considered. It is known (cf. [1, 2]) that all solutions of the delay logistic equations (1) N'(t) =...
متن کاملON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12020212